验证二叉搜索树
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than the node’s key. Both the left and right subtrees must also be binary search trees. Example 1:
2
/ \
1 3
Input: [2,1,3] Output: true Example 2:
5
/ \
1 4
/ \
3 6
Input: [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
题目大意 给定一个二叉树,判断其是否是一个有效的二叉搜索树。假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
解题思路
- 递归法
- 检查每个节点,左节点是否小于根节点,右节点大于根节点
- 中序遍历法
- 正确的二叉搜索树,按中序遍历,是按左、中、右顺序从小到大排序,如果出现逆序则不是正确的二叉搜索树
func isValidBST(root *TreeNode) bool {
return Helper(root, math.MinInt32, math.MaxInt32)
}
func Helper(root *TreeNode, min, max int) bool {
if root == nil {
return true
}
if root.Val < min || root.Val > max {
return false
}
return Helper(root.Left, min, root.Val-1) && Helper(root.Right, root.Val+1, max)
}